大型語言模型

自托管大型語言模型GPT-OSS

OpenAI發布的自托管大型語言模型GPT-OSS及其本地部署的準備與步驟

GPT-OSS 是 OpenAI 於 2025 年 8 月 5 日正式發布的一款自托管大型語言模型(LLM),標誌著開源大型語言模型領域的一大里程碑。這個模型家族由兩個主要版本組成:gpt-oss-20b 和 gpt-oss-120b,分別擁有約 210 億與 1170 億個參數,且採用尖端的 Mixture-of-Experts(MoE)架構,實現了高效能與優異的推理能力。 GPT-OSS 的主要能力與特色 GPT-OSS 以其多項領先技術和優勢,在眾多大型語言模型中脫穎而出: GPT-OSS 與其他大型語言模型的對比 特色 GPT-OSS… Read More »OpenAI發布的自托管大型語言模型GPT-OSS及其本地部署的準備與步驟

人工智能開卷考試系統

基於自託管大語言模型(LLM)的人工智能(AI)開卷考試系統

定位:解決傳統開卷考試缺陷,同時培養AI時代的核心能力適用場景:香港的大學、高等學院以至高校專業課程期末考評 一、傳統開卷考試的四大痛點 痛點 具體問題 作弊風險高 學生夾帶未授權資料、在書籍內頁手寫答案、交換書籍 資料攜帶低效 法學考試需攜帶10+本判例集,工程科攜帶公式手冊+圖紙,搬運耗時易出錯 評核目標偏移 教師為防作弊,出題偏向冷門細節,反而偏離應用能力考核初衷 評分標準不一 開放題因教師主觀判斷產生評分差異,學生申訴率高 ▶ 自託管LLM的核心價值:將實體書數位化+AI監考,既保留開卷考試優勢(測深度能力),又根除物理作弊場景 二、為何需要變革開卷考試?——聚焦未來能力的必要性 三、系統設計:AI作為「智能考試伴侶」 (1)架構核心創新 模組 功能 數位資料庫 考前上傳指定材料(教材/筆記/判例),AI自動OCR辨識+建立索引 安全沙盒環境 考試時僅可查詢預存資料,禁用互聯網搜索(隔離維基百科/谷歌/LLMs等外部源) 動態評分系統 記錄學生每次查詢的prompt質量作為評分項… Read More »基於自託管大語言模型(LLM)的人工智能(AI)開卷考試系統

LLM 客服機器人

革新客户服務:LLM 聊天機器人擔任 24/7 客服大使

在數位化浪潮中,客戶服務已成為品牌競爭的核心戰場。傳統客服系統受限於人力、時間與成本,難以滿足消費者對「即時、精準、個人化」服務的渴求。而基於 大型語言模型(LLM) 的新一代聊天機器人,正以顛覆性姿態重塑服務體驗,化身為永不疲倦的「品牌大使」,為企業開創全天候價值輸送的新紀元。 一、突破傳統框架:LLM 的三大變革優勢 1. 深度語境理解,告別機械式問答 傳統規則型機器人僅能回應預設指令,一旦用戶偏離腳本便陷入僵局。LLM 機器人則具備 跨對話記憶與推理能力: 2. 情緒智能:從功能支援到情感連接 LLM 透過 情感分析模型 識別用戶語境中的焦慮、不滿或期待,動態調整回應策略: 3. 無縫人機協作,釋放高價值人力 LLM 機器人並非取代真人客服,而是擔任「智慧前哨」: 二、企業實踐典範:數據驅動的服務革命 ⦿ 案例:航空業的數位服務躍遷 亞洲某龍頭航空公司部署 LLM… Read More »革新客户服務:LLM 聊天機器人擔任 24/7 客服大使

破解未來密碼

破解未來密碼:教師引導學生駕馭AI的10項核心素養

人工智慧(AI)正重塑全球社會運作模式,教育工作者在此變革中扮演關鍵角色。本文以技術應用、倫理思辨、跨域創新等十大面向,重新梳理AI教育的核心價值,並透過實例分析與教育實踐,闡明教師如何引導學生駕馭這場科技革命。 一、AI是跨學科的問題解決工具AI教育遠超程式編寫範疇,需培養「設計思考」與「系統整合」能力。例如,新加坡南洋理工大學學生開發「AI校園導航系統」,結合感測器數據與機器學習,為視障學生規劃無障礙路徑。此過程涵蓋問題定義(辨識需求)、數據倫理(保護使用者隱私)、技術測試(反覆修正路線準確性),體現AI作為工具的本質——透過協作與迭代,將抽象概念轉化為社會價值。 二、AI已滲透日常,學生亟需「科技覺察力」從TikTok演算法推薦內容、ChatGPT輔助作業,到智慧手環監測健康數據,AI無形中影響學生行為。皮尤研究中心調查指出,89%青少年依賴AI驅動的應用程式,卻僅12%能解釋背後的數據蒐集機制。教師可設計「數位足跡追蹤」活動,讓學生分析Instagram廣告推送邏輯,進而探討「個人數據主權」議題,培養主動反思科技影響的意識。 三、AI倫理爭議是公民素養必修課2018年MIT研究揭露,IBM人臉辨識系統對非裔女性誤判率達34.7%,根源於訓練數據的種族失衡。教師可引導學生模擬「醫療診斷AI開發」情境:若數據庫僅包含歐美病例,系統將如何誤判亞洲患者症狀?此類案例讓學生理解,技術中立性只是表象,演算法背後隱藏社會結構性偏見,科技開發者必須肩負倫理責任。 四、AI打破學科疆界,活化傳統教學在歷史課中,澳洲墨爾本高中學生運用自然語言處理模型,分析二戰時期日記文體,推斷士兵心理狀態變化;藝術課則可訓練AI辨識浮世繪的構圖規則,對比葛飾北齋與現代插畫的視覺語彙。日本早稻田大學更開發「AI俳句生成器」,透過比對松尾芭蕉與正岡子規的韻律資料庫,協助學生掌握季語運用。這些實踐證明,AI能成為串聯人文與科技的創新媒介。 五、AI教育奠基21世紀核心能力設計AI解決方案時,學生需同步鍛鍊四大能力: 數據素養:解讀資料偏差(如氣候模型忽略小島國數據)運算思維:將校園噪音問題拆解為分貝監測、模式識別模組倫理決策:評估人臉辨識系統對遊民的隱私衝擊系統協作:整合工程師、社工人員與社區居民觀點 此過程直接對應OECD定義的「全球公民關鍵能力指標」。 六、AI素養決定職涯「人機協作」優勢世界經濟論壇《2025技能報告》指出,AI將取代85%的行政重複性工作,但創造「AI稽核師」「演算法倫理顧問」等新職種。例如,行銷人員需學會操作Midjourney生成廣告素材,同時保有「判斷受眾文化敏感度」的人性化能力;法律從業者須理解合約審查AI的邏輯盲點,避免誤判非典型案件。教師可引進「職業情境模擬」,讓學生體會「人類不可替代性」的具體內涵。 七、AI驅動永續發展,培養全球行動者印度學生團隊開發「AI蜂巢監測器」,透過聲紋分析判斷蜂群健康狀態,協助解決授粉危機;挪威高中生則設計「AI塑膠辨識船」,於峽灣自動分類回收海洋廢棄物。此類專案不僅實踐SDGs目標,更讓學生體認:科技能成為環境正義的槓桿,而非加劇資源掠奪的工具。 八、AI揭露人類智慧的不可複製性ChatGPT雖能撰寫流暢論文,卻無法像學生在社區服務後,將同理心轉化為扶貧方案的創意;AI繪圖工具可生成精緻插畫,但缺乏對「貧窮視覺再現」的批判反思。教師可設計「人機創作對比」作業,例如比較AI與學生以「戰爭」為題的詩歌,突顯情感共鳴與歷史意識的獨特價值。 九、AI促進教育平權,重塑學習型態在偏鄉地區,MIT開發的「AI作文批改系統」能即時分析邏輯漏洞,讓教師更專注引導批判思考;聽障學生則可透過「手語即時翻譯AI」,突破傳統課堂限制。這些技術非為取代教師,而是解放其專業能量,將教學重心從「知識傳遞」轉向「啟發潛能」。 十、AI時代需要終身學習的「韌性基因」當Deepfake技術能偽造政治演說,當自動駕駛面臨「電車難題」的道德抉擇,學生必須具備持續更新知識架構的能力。芬蘭將「AI素養」列為國民教育七大支柱,要求教師從「課程執行者」轉型為「學習架構師」,協助學生建立自主探究的認知模式。 結論:教師是AI時代的價值領航者教育工作者不再只是知識傳遞者,而是引導學生在技術洪流中錨定人性價值的專業領航者。他們需具備三種核心角色: 批判思維的鍛造者:透過倫理爭議案例,培養學生解構科技霸權的洞察力跨域創新的催化劑:打破學科藩籬,將AI轉化為人文關懷的實踐工具社會正義的守門人:確保科技普及不犧牲弱勢族群權益,落實包容性創新 正如劍橋大學教育學家David Perkins所言:「最好的教育不是預測未來,而是培育能塑造未來的人。」當教師以專業賦能學生,AI將不再是冰冷演算法,而是共築人性化未來的協作夥伴。

解碼中國人形機器人產業的造人狂潮

鋼鐵同事即將入職?——解碼中國人形機器人產業的造人狂潮

在特斯拉Optimus為工廠裝配線端上咖啡、優必選Walker S於新能源車廠執行物流調度的當下,人形機器人正從實驗室加速滲透至產業場景。根據《2024中國科技機器人企業TOP50》數據,中國已形成涵蓋工業機器人、服務機器人與人形機器人的完整產業鏈,其中優必選、智元機器人、星動紀元等企業更在全球人形賽道占據技術制高點。本文將結合中國企業的突破性產品,解析人形機器人商業化進程中的關鍵節點與挑戰。 一、技術突破:中國企業的創新實踐(1)運動控制的「生物模擬」躍升中國企業在運動控制領域展現出獨特技術路徑。宇樹科技研發的四足機器人Unitree B2,透過仿生肌腱與強化學習結合,實現每秒10次的動態步態調整,可適應山地、樓梯等複雜地形。而智元機器人的「远征A1」人形機器人,憑藉全身49個自由度關節與液壓驅動系統,能在傾斜30度的鋼板上穩定行走,精度誤差僅0.3毫米。 (2)認知交互的場景化深耕中國企業將語言模型與垂直場景深度結合: 二、產業生態:從核心部件到應用場景的完整佈局(1)核心技術的國產化突圍中國企業正打破精密部件的進口依賴: 三、商業化挑戰:成本、倫理與生態瓶頸(1)成本壓縮的產業鏈協同儘管優必選透過規模化生產將Walker系列成本壓至9萬美元,但距離消費級市場的3000美元閾值仍有差距4。關鍵在於雙環傳動、中大力德等企業能否在RV減速器、力矩感測器等核心部件實現量產突破。 (2)倫理規範的先行探索中國企業正建立行業標準: 四、未來展望:中國引領的三大趨勢(1)「燈塔工廠」的智能化擴散中國擁有全球40.5%的「燈塔工廠」,這些標竿案例將推動人形機器人在汽車製造、電子組裝等領域的規模化應用。例如匯川技術的視覺導引系統,已幫助比亞迪工廠實現全流程無人化生產。 (2)「銀髮經濟」的服務突破橡鹿科技的適老化機器人可監測老人步態變化,提前14天預測跌倒風險;元化智能的骨科康復機器人則能根據患者數據動態調整訓練強度。 (3)全球化市場的技術輸出中國機器人正加速出海:炬星科技的倉儲機器人獲日本物流企業批量採購,替代30%人力;普渡科技的送餐機器人進入歐洲肯德基門店,訂單量年增200%。 結語:從「製造大國」到「智造生態」當優必選Walker S在韓國首爾博物館擔任導覽員,當星塵智能Astribot S1於新加坡家庭執行家務,中國人形機器人已成為全球技術革新的關鍵推動力。據《2025中國人形機器人產業藍皮書》預測,2030年中國將占據全球人形機器人產能的55%。這場變革不僅是機械與算法的勝利,更是中國企業從單點突破到系統整合的產業升級宣言。未來的人機共生時代,或許正由深圳實驗室裡的齒輪咬合聲與上海工廠的機械臂舞動所共同譜寫。

人工智能代理Manus AI

人工智能代理(AI Agent):從概念到實踐——了解Manus AI如何重塑人機協作新範式

引言:AI Agent的時代已來臨在人工智慧技術飛速發展的2025年,AI Agent(智慧代理體)正從實驗室概念快速邁向產業化應用。這類能自主思考、規劃並執行任務的智慧體,被視為繼大型語言模型(LLM)後的下一波技術浪潮。而中國團隊Monica推出的Manus AI,憑藉其突破性的「知行合一」設計理念與技術實力,成為全球首款通用型AI Agent的標杆,不僅在GAIA基準測試中超越OpenAI同類產品,更掀起資本市場對AI應用端的狂熱追捧。本文將以Manus AI為核心,探討AI Agent如何重新定義人類與機器的協作模式。 (一) Manus AI:從「建議者」到「執行者」的質變 (1) 顛覆傳統AI的核心突破與ChatGPT等傳統對話式AI不同,Manus AI的設計目標是直接交付成果,而非僅提供建議。例如,當用戶要求「分析特斯拉股票」時,Manus會自主完成以下流程: 這種「閉環執行」能力,使其能像人類員工般獨立完成端到端任務。根據官方測試,Manus在處理複雜任務時效率提升10倍以上,且成果可直接應用於實務場景(如企業投融資決策)。 (2) 技術架構的三大支柱 Manus的技術優勢源於三大創新: (二) 應用場景:從企業到個人的效率革命 (1) 企業級服務:降本增效的新引擎Manus已展現出對B端市場的顛覆性潛力: 這些應用不僅減少人工失誤,更釋放專業人才從事高價值創造工作。 (2) 個人用戶的智慧生活助手對C端用戶而言,Manus重新定義了「生產力工具」: (三)… Read More »人工智能代理(AI Agent):從概念到實踐——了解Manus AI如何重塑人機協作新範式

AI人工智能倫理未來的挑戰與重要性

AI人工智能倫理:未來的挑戰與重要性

隨著人工智能(AI)技術的快速發展,AI已經深入我們生活的各個領域,從醫療、教育到交通、金融,無所不在。然而,AI的廣泛應用也帶來了一系列倫理問題和挑戰。這些問題不僅關乎技術的發展,更關乎人類社會的價值觀、公平性和未來方向。本文將探討AI倫理在未來的重要性以及面臨的主要挑戰。 AI倫理的重要性 AI倫理是指在使用和開發人工智能技術時,必須遵循的道德原則和價值觀。其重要性體現在以下幾個方面: 儘管AI倫理的重要性已被廣泛認可,但在實際應用中仍面臨諸多挑戰: 面對這些挑戰,政府、企業、學術界和社會各界需要共同努力,推動AI倫理的發展。以下是一些可能的解決方向: AI人工智能技術的潛力巨大,但其倫理問題同樣不容忽視。只有在技術發展的同時,堅守倫理底線,才能確保AI技術真正造福人類社會。未來,AI倫理將成為科技發展的核心議題之一,我們需要以負責任的態度迎接這一挑戰,共同塑造一個公平、透明、可持續的AI未來。 如果你們的學校或機構也想邀請我們來舉辦有闗人工智能倫理的講座及活動,歡迎跟我們聯絡:info@campusaibot.com | 852-3480-7273。

不會設計也沒關係!AI幫你打造高效高質感簡報

不會設計也沒關係!AI幫你打造高效高質感簡報

前言:AI如何改變簡報製作? 在現代職場中,簡報是溝通想法、展示數據和說服觀眾的重要工具。然而,製作一份專業且吸引人的簡報往往需要大量的時間和精力。幸運的是,隨著人工智慧(AI)技術的快速發展,現在有許多AI工具可以幫助我們更高效地完成這項任務。無論是生成內容、設計幻燈片,還是提供演講反饋,AI都能成為你的得力助手。本文將帶你了解如何利用AI工具輕鬆製作PowerPoint簡報,並分享一些實用的技巧和工具。 1. 使用AI工具自動生成簡報 AI簡報工具可以根據你的輸入(如主題、大綱或文字)自動生成幻燈片,大幅節省時間。 推薦工具: – Beautiful.ai:自動設計幻燈片,並提供智能模板。 – Canva Magic Design:根據文字或圖片生成設計。 – Slidebean:從大綱或提案內容創建簡報。 – Gamma:根據主題生成完整的簡報。 使用步驟: i. 選擇一個AI簡報工具並註冊。 ii. 輸入你的主題或大綱。 iii. 選擇AI推薦的模板或手動調整。 iv. 根據需求自定義幻燈片內容。 v. 導出簡報或直接分享。 2. 讓AI幫你撰寫簡報內容 如果你不確定如何組織簡報內容,AI寫作工具可以幫助你生成大綱、要點甚至詳細內容。 推薦工具: –… Read More »不會設計也沒關係!AI幫你打造高效高質感簡報

AI是否中立?揭開隱形偏見下的社會不平等、算法不公及其帶來的影響

隨著人工智能(AI)技術的快速發展,AI已經深入我們生活的各個領域,從醫療診斷、金融分析到社交媒體推薦,無處不在。然而,隨著AI的普及,一個重要的問題逐漸浮現:AI是否真的中立? 事實上,AI系統並非完全客觀,它們可能會產生偏見,進而對社會帶來深遠的影響。本文將探討AI偏見的來源、影響以及可能的解決方案。 AI偏見的來源 1. 數據偏差   AI系統的訓練依賴於大量的數據,而這些數據往往反映了現實世界中的偏見。例如,如果訓練數據中某一種族或性別的比例過低,AI模型可能會在預測或決策中對這些群體產生偏差。這種數據偏差可能來自歷史數據的不平等,或是數據收集過程中的疏漏。 2. 算法設計   算法設計者的價值觀和偏見可能無意中影響AI系統的開發。例如,設計者可能會選擇特定的特徵或指標來訓練模型,這些選擇可能隱含了主觀判斷,從而導致AI系統的偏見。 3. 社會結構性偏見   社會中固有的不平等和偏見也會被AI系統放大。例如,在招聘系統中,如果歷史數據顯示某一行業中男性比例較高,AI可能會傾向於推薦男性候選人,從而加劇性別不平等。 —  AI偏見的影響 1. 加劇社會不平等   AI偏見可能導致某些群體在資源分配、機會獲取等方面處於不利地位。例如,在金融領域,AI系統可能因為偏見而拒絕向某些少數族裔或低收入群體提供貸款,進一步加劇社會的不平等。 2. 影響司法公正   在司法系統中,AI被用於預測犯罪風險或量刑建議。如果AI系統存在偏見,可能會對某些群體產生不公平的判決,從而損害司法公正。 3. 損害企業信譽   對於企業而言,AI偏見可能導致產品或服務的歧視性問題,進而損害企業的信譽和用戶信任。例如,社交媒體平台的推薦算法如果存在偏見,可能會引發用戶的不滿和抵制。 4. 限制創新與多樣性   AI偏見可能限制創新和多樣性。例如,在招聘或教育領域,如果AI系統傾向於選擇特定背景的候選人,可能會忽略其他具有潛力的人才,從而限制社會的多樣性和創新能力。 —  解決AI偏見的可能方案 1. 改進數據質量   確保訓練數據的多樣性和代表性是減少AI偏見的關鍵。數據收集過程中應涵蓋不同群體、地區和背景,並定期審查數據是否存在偏差。 2. 透明化算法設計   提高AI算法的透明度,讓設計過程和決策邏輯更加公開。這不僅有助於發現潛在的偏見,也能增強公眾對AI系統的信任。 3. 引入多元化的開發團隊  … Read More »AI是否中立?揭開隱形偏見下的社會不平等、算法不公及其帶來的影響

DeepSeek AI release 發佈

DeepSeek-V3:從成本到性能——超越競爭對手並引領新時代的AI模型規則

DeepSeek:中國的AI界黑馬公司背景DeepSeek(杭州深度求索人工智能基礎技朮研究有限公司)由幻方量化於2023年4月創立。幻方量化是中國量化私募領域的領軍企業,管理規模曾超千億,目前保持在約600億元。憑藉幻方量化的強大資源,DeepSeek在AI大模型研究領域迅速崛起。 專注於AI大模型研究DeepSeek專注於AI大模型的研究與開發,致力於推動人工智能技術的前沿突破。與其他AI公司不同,DeepSeek暫未全面考慮商業化,也未進行融資,專注於技術創新而非短期盈利。 獨特定位在中國AI領域,DeepSeek的定位獨特:技術驅動:專注於大模型研究,追求技術突破。非商業化:暫不考慮商業化,專注於技術積累。獨立運營:未進行融資,保持獨立性。 DeepSeek-V3 正式發布:全新 MoE 模型引領 AI 新紀元Deepseek隆重推出其全新系列模型 DeepSeek-V3 的首個版本,並同步開源。作為 DeepSeek 團隊的最新力作,DeepSeek-V3 在模型架構、訓練規模和性能表現上均實現了重大突破,旨在為用戶提供更智能、更高效的 AI 服務。 模型概覽DeepSeek-V3 是一款基於 Mixture of Experts (MoE) 架構的自研模型,擁有 6710 億參數,其中每次推理僅激活… Read More »DeepSeek-V3:從成本到性能——超越競爭對手並引領新時代的AI模型規則